FFU : The Ideal Choice for High-Efficiency Ventilation in Clean room, Part of Semiconductor and Biological Clean room
FFU : The Ideal Choice for High-Efficiency Ventilation in Clean room, Part of Semiconductor and Biological Clean room
November 27, 2025
Cleanrooms place stringent requirements on ventilation systems. They must provide sufficient airflow and pressure while precisely controlling temperature and humidity, ensuring consistent air quality. These requirements apply to various airflow patterns and room sizes.
Many production processes mandate cleanroom conditions because cleanrooms, and even ultra-cleanrooms, guarantee the environmental quality of products during rigorous manufacturing. Even minute impurities in the air can adversely affect production processes, leading to high scrap rates. For example, production environments in fields such as optics and lasers, aerospace, biosciences, medical research and treatment, food and pharmaceutical production, and nanotechnology require a near 100% dust-free and bacteria-free air supply.
However, air conditioning and ventilation systems in cleanrooms consume significant amounts of energy due to high air exchange rates, making energy efficiency and cost critical issues. Therefore, in addition to meeting aerodynamic performance requirements, fans must also meet key standards such as compact size, low noise, use cleanroom-compatible materials, proper control capabilities, networking capabilities, and energy-efficient operation.
FFU are designed specifically to address these needs. They effectively improve ventilation in cleanrooms, ensuring the stability of the production environment and product quality.
An FFU is a device that cleverly combines a filtration system with a fan. It features a ceiling-mounted design, is compact and efficient, and requires minimal installation space. The FFU contains pre-filters and high-efficiency filters. Air is drawn in from the top by the fan, finely filtered, and then uniformly delivered at a velocity of 0.45 m/s ± 20%.
FFU play a crucial role in cleanrooms, clean benches, clean production lines, modular cleanrooms, and localized Class 100 environments. These applications span semiconductor, electronics, flat panel display, and disk drive manufacturing, as well as optics, biomedicine, and precision manufacturing—industries with stringent requirements for air pollution control.
The flexibility and ease of use of FFU: The self-powered, modular design of the FFU makes replacement, installation, and relocation simple and easy. Its matching filters are easy to replace, not limited by location, and ideal for the zoned control needs of cleanrooms. FFU can be easily replaced or moved to adapt to different clean environments as needed. Furthermore, FFU can be used to easily create simple clean benches, clean booths, clean pass-through cabinets, and clean storage cabinets to meet various cleanliness requirements. Its ceiling-mounted installation method, especially in large cleanrooms, significantly reduces construction costs.
Negative Pressure Ventilation Technology: The unique negative pressure ventilation design of the FFU fan filter unit allows it to easily achieve high-level cleanliness in various environments. Its self-powered characteristic maintains positive pressure inside the cleanroom, effectively preventing the infiltration of external particles and ensuring a safe and convenient seal.
Quiet Operation: The FFU fan filter unit boasts excellent quiet operation, maintaining low noise even during prolonged use. Its vibration is very low, ensuring smooth stepless speed regulation and uniform airflow distribution, providing stable support for the clean environment.
Cleanroom Air Supply Units
* Rapid Construction: Utilizing FFU technology, there is no need for ductwork fabrication and installation, significantly shortening the construction cycle.
* Reduced Operating Costs: Supplying clean air to cleanrooms with FFU technology is not only economical but also remarkably energy-efficient. Although the initial investment for FFU may be slightly higher than ducted ventilation, their maintenance-free operation over the long term significantly reduces overall operating costs.
* Space Saving: Compared to other systems, FFU systems occupy less floor height within the plenum chamber and take up virtually no space within the cleanroom.
* Wide Applicability: FFU systems can adapt to cleanrooms and microenvironments of varying sizes and cleanliness requirements, providing high-quality clean air. During the construction or renovation of cleanrooms, it not only improves cleanliness but also effectively reduces noise and vibration.
FFU System Applications in Semiconductor Wafer Shops: FFU systems are widely used in cleanrooms requiring ISO 1-4 air purification levels, playing a crucial role, particularly in the vertical laminar flow operations of semiconductor wafer shops. In the technical mezzanine, air is efficiently delivered to the clean production layer via FFU. This airflow then passes through raised floors and waffle slab openings, reaching the clean lower technical mezzanine. Finally, after being processed by DCC (Dry Cooling Coils) in the return air duct, the air returns to the upper technical mezzanine, forming a cycle. This design effectively supports the wafer fabrication workshop's stringent control over the production environment, including temperature, humidity, cleanliness, and vibration damping.
Furthermore, the application of FFU systems in biological laboratories is also significant. When laboratory personnel handle pathogenic microorganisms, experimental materials containing pathogenic microorganisms, or parasites, FFU systems impose special requirements on laboratory design and construction to ensure experimental safety and a pollution-free environment.
Current laboratory purification systems typically consist of multiple parts, including a static pressure layer, a process layer, a process auxiliary layer, and a return air duct. This system primarily relies on FFU to process the air. Its working principle is: the FFU provide the necessary circulation power, mixing fresh air with recirculated air, which is then delivered to the process layer and process auxiliary layer after passing through ultra-high efficiency filters. At the same time, by maintaining a negative pressure state between the static pressure layer and the process layer, the leakage of harmful substances is effectively prevented, ensuring the cleanliness and safety of the laboratory environment.